Business Members
Organization Members

Sign Up For Email Updates

Enter your email address:

Follow us on Twitter
Follow us on Twitter
Follow IBI
Photo of Biochar
Biochar Certification
Help put the Earth back in the black


Transport of Escherichia coli O157:H7 and Salmonella typhimurium in biochar-amended soils with different textures

TitleTransport of Escherichia coli O157:H7 and Salmonella typhimurium in biochar-amended soils with different textures
Publication TypeJournal Article
Year of Publication2015
AuthorsAbit , Sergio M., Bolster Carl H., Cantrell Keri B., Flores Jessamine Q., and Walker Sharon L.
JournalJournal of Environmental Quality
Abstract

The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has been shown to increase soil retention of agrochemicals, and recent research has indicated that biochar may be effective in increasing soil retention of bacteria. In this study we investigate the transport behavior of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and carboxylated polystyrene microspheres in water-saturated column experiments for two soils (fine sand and sandy loam) amended with 2% poultry litter or pine chip biochars pyrolyzed at 350 and 700°C. Adding poultry litter biochar pyrolyzed at 350°C did not improve soil retention of either bacteria in fine sand and even facilitated their transport in sandy loam. Addition of either biochar pyrolyzed at 700°C generally improved retention of bacteria in fine sand, with the pine chip biochars being more effective in limiting their transport. Results from the column studies and auxiliary batch studies suggest that changes in cell retention after biochar amendments were likely due to changes in bacterial attachment in the column and not to physical straining or changes in survivability. We also found that changes in bacterial hydrophobicity after biochar amendments were generally correlated with changes in bacterial retention. The influence of biochar amendment in increasing retention of both bacteria was generally more pronounced in fine sand and indicates that soil texture affects the transport behavior of bacteria through biochar-amended soils.

URLhttp://naldc.nal.usda.gov/naldc/catalog.xhtml?id=58653