Business Members
Organization Members

Sign Up For Email Updates

Enter your email address:

Follow us on Twitter
Follow us on Twitter
Follow IBI
Photo of Biochar
Biochar Certification
Help put the Earth back in the black


Biochar Amendment Increases Resistance to Stem Lesions Caused by Phytophthora spp. in Tree Seedlings

TitleBiochar Amendment Increases Resistance to Stem Lesions Caused by Phytophthora spp. in Tree Seedlings
Publication TypeJournal Article
Year of Publication2012
AuthorsZwart, Drew C., and Kim Soo-Hyung
JournalHort Science
Abstract

Soil amendment with biochar is thought to confer multiple benefits to plants including induction of systemic resistance to plant pathogens. Pathogens in the genus Phytophthora cause damaging diseases of woody species throughout the world. The objective of this study was to test 1) whether biochar amendment induces resistance to canker causing Phytophthora pathogens; and 2) how this resistance is related to the amount of biochar amendment in two common landscape tree species: Quercus rubra (L.) and Acer rubrum (L.). Seedlings of Q. rubra and A. rubrum were planted in peatmoss-based potting mix uniformly amended with 0%, 5%, 10%, or 20% biochar by volume. Plants in each treatment group were stem wound-inoculated with an isolate of Phytophthora cinnamomi Rands (host: Q. rubra) or P. cactorum (Leb. and Cohn) Schröeter (host: A. rubrum) using standard agar-plug inoculation procedures. Amendment of potting media with 5% biochar reduced horizontal expansion of lesions in both hosts, whereas the same treatment significantly reduced vertical expansion of lesions in A. rubrum (P < 0.05). In addition, 5% biochar resulted in a higher midday stem water potential in Q. rubra (P = 0.066) and significantly greater stem biomass in A. rubrum compared with inoculated control plants (0% biochar, P < 0.05). Our results suggest that biochar amendment has the potential to alleviate disease progression and physiological stress caused by Phytophthora canker pathogens and there is likely an optimal level of biochar incorporation into the root media beyond which the effects may be less pronounced.